DDR SDRAM MEMORY

How to identify different sizes of computer memory RAM?

What is DDR SDRAM Memory?
Which DDR SDRAM to buy?
The evolution of DDR SDRAM
What DDR SDRAM memory to buy?
Why buy DDR SDRAM Memory?
How much RAM do I need?
How to identify size of RAM modules ?
How to install memory?
How about mixing RAM brands?
DDR SDRAM Memory upgrade websites

You have a large collection of RAM modules - SIMMs and DIMMs, but you have no idea of how to identify the memory capacity in megabytes (MB) of the individual modules, and you want to know if there is any way to determine the size of a module other than by installing it on a motherboard in a computer that supports that type of RAM.

It is possible to identify the chips by part number. You have to identify the size of each the chips on a module, and then multiply the size by the number of chips on the module to determine its memory capacity.

Different RAM manufacturers have developed their own methods of identification, so it is has become difficult to identify the chips without looking up the exact part number on a website that provides the information.

Luckily, the Internet has made doing this fairly easy via the Google search engine.

Unless they have been remarked by unscrupulous dealers that are selling substandard modules not passed for use in a computer as computer-quality, all of the chips on a particular module will have the manufacturer's name (or logo), and a part number printed on them.

For example, a 30-pin SIMM module with nine chips on the module, could have the part number - KM41C4000AJ-8. Drop the AJ-8 (the first letter is usually the quality - A, B, C, etc.), then use KM41C4000 to conduct a Google search. You should be provided with links to many sites that provide information about part numbers. One of them is http://www.memoryusa.com/guide.html.

The KM indicates parts made by Samsung. The 41 indicates that it is a 1Mbit x 4 part. This means that the chip holds 4Mbits. Eight of the nine chips hold memory, so this is a 8 x 4Mbit, or 32Mbit module. There are eight bits to a byte, therefore this is an 4MB module. The ninth chip is there to add parity. This was used as a means of checking for memory errors that is no longer used.

For a 168-pin DIMM module that has eight chips (no parity chip), and the part number - TMS626812DGE-12A - you would use TMS626812 to search for information on it.

Each chip is a 2Mbit x 8 (16Mbit) SDRAM chip. There are eight chips, so this is a 16MB SDRAM module, which is slow compared to the fastest speed that SDRAM modules reached. The 12 in the part number indicates that the module has a maximum frequency (speed) of 66MHz. SDRAM modules, now superseded by DDR and Rambus RAM, reached a maximum speed of 133MHz.

Decode RAM chip part numbers

At the following site, you just enter the RAM chip part numbers to find out the manufacturer and specifications. -

http://www.chipmunk.nl/DRAM/ChipManufacturers.htm


Different Computer Memory RAM Types


In order to enable computers to work faster, there are several types of memory available today. Within a single computer there is no longer just one type of memory. Because the types of memory relate to speed, it is important to understand the differences when comparing the components of a computer.

SIMM (Single In-line Memory Modules)
SIMMs are used to store a single row of DRAM, EDO or BEDO chips where the module is soldered onto a PCB. One SIMM can contain several chips. When you add more memory to a computer, most likely you are adding a SIMM.

The first SIMMs transferred 8 bits of data at a time and contained 30 pins. When CPU's began to read 32-bit chunks, a wider SIMM was developed and contained 72 pins.

72 pin SIMMS are 3/4" longer than 30 pin SIMMs and have a notch in the lower middle of the PCB. 72 pin SIMMs install at a slight angle.

DIMM (Dual In-line Memory Modules)
DIMMs allow the ability to have two rows of DRAM, EDO or BEDO chips. They are able to contain twice as much memory on the same size circuit board. DIMMs contain 168 pins and transfer data in 64 bit chunks.

DIMMs install straight up and down and have two notches on the bottom of the PCB.

SODIMM (Small Outline DIMM)
SO DIMMs are commonly used in notebooks and are smaller than normal DIMMs. There are two types of SO DIMMs. Either 72 pins and a transfer rate of 32 bits or 144 pins with a transfer rate of 64 bits.

RDRAM - RIMM
Rambus, Inc, in conjunction with Intel has created new technology, Direct RDRAM, to increase the access speed for memory. RIMMs appeared on motherboards sometime during 1999. The in-line memory modules are called RIMMs. They have 184 pins and provide 1.6 GB per second of peak bandwidth in 16 bit chunks. As chip speed gets faster, so does the access to memory and the amount of heat produced. An aluminum sheath, called a heat spreader, covers the module to protect the chips from overheating.

SO RIMM
Similar in appearance to a SODIMM and uses Rambus technology.

Technology

DRAM (Dynamic Random Access Memory)
One of the most common types of computer memory (RAM). It can only hold data for a short period of time and must be refreshed periodically. DRAMs are measured by storage capability and access time.

Storage is rated in megabytes (8 MB, 16 MB, etc).

Access time is rated in nanoseconds (60ns, 70ns, 80ns, etc) and represents the amount of time to save or return information. With a 60ns DRAM, it would require 60 billionths of a second to save or return information. The lower the nanospeed, the faster the memory operates.

DRAM chips require two CPU wait states for each execution.

Can only execute either a read or write operation at one time.

FPM (Fast Page Mode)
At one time, this was the most common and was often just referred to as DRAM. It offered faster access to data located within the same row.

EDO (Extended Data Out)
Newer than DRAM (1995) and requires only one CPU wait state. You can gain a 10 to 15% improvement in performance with EDO memory.

BEDO (Burst Extended Data Out)
A step up from the EDO chips. It requires zero wait states and provides at least another 13 percent increase in performance.

SDRAM (Static RAM)SDRAM, DDR, RAMBUS
Introduced in late 1996, retains memory and does not require refreshing. It synchronizes itself with the timing of the CPU. It also takes advantage of interleaving and burst mode functions. SDRAM is faster and more expensive than DRAM. It comes in speeds of 66, 100, 133, 200, and 266MHz.

DDR SDRAM (Double Data Rate Synchronous DRAM)
Allows transactions on both the rising and falling edges of the clock cycle. It has a bus clock speed of 100MHz and will yield an effective data transfer rate of 200MHz.

Direct Rambus
Extraordinarily fast. By using doubled clocked provides a transfer rate up to 1.6GBs yielding a 800MHz speed over a narrow 16 bit bus.

Cache RAM

This is where SRAM is used for storing information required by the CPU. It is in kilobyte sizes of 128KB, 256KB, etc.

Other Memory Types
VRAM (Video RAM)
VRAM is a video version of FPM and is most often used in video accelerator cards. Because it has two ports, It provides the extra benefit over DRAM of being able to execute simultaneous read/write operations at the same time. One channel is used to refresh the screen and the other manages image changes. VRAM tends to be more expensive.

Flash Memory
This is a solid-state, nonvolatile, rewritable memory that functions like RAM and a hard disk combined. If power is lost, all data remains in memory. Because of its high speed, durability, and low voltage requirements, it is ideal for digital cameras, cell phones, printers, handheld computers, pagers and audio recorders.

Shadow RAM
When your computer starts up (boots), minimal instructions for performing the startup procedures and video controls are stored in ROM (Read Only Memory) in what is commonly called BIOS. ROM executes slowly. Shadow RAM allows for the capability of moving selected parts of the BIOS code from ROM to the faster RAM memory.


Ordinary SDRAM comes in types that run at official speeds of 66, 100, and 133MHz, i.e., usually at the same speed as the default Front Sided Bus (FSB) speed of the motherboard.

The FSB is the network of interconnections between the various parts of the motherboard.

DDR SDRAM uses a new technique to transfer data that effectively doubles its speed. This kind of RAM is being used on motherboards that run AMD Socket A Athlon and Duron processors, which are physically identical apart form the amount of onboard Level 2 cache they contain, and the bus speed that they run on - 100MHz for the Duron, and 133MHz for the Athlon.

PC 100 DDR RAM has been named PC 1600 SDRAM because of its data bandwidth (transfer capacity) of 1.6GB per second. A Socket A motherboard must specifically support it. Motherboards with this capability are available from most of the major motherboard manufacturers.

In short, PC 1600 SDRAM is the DDR equivalent of ordinary PC100 SDRAM.

But further confusion is being added with the advent of PC 2100 DDR RAM, which is just the DDR version of PC 133 SDRAM. It was named PC 2100 because it has a data bandwidth of 2.1GB per second. Special Socket A motherboards support it and the new range of Athlon XP processors that use it. These motherboards will have a 133MHz FSB and a 266MHz bus speed between the processor and the RAM memory.

Earlier Athlon processors (Thunderbirds) that use 100MHz FSB are marked with a B, and the new ones using the 133MHz FSB are marked with a C.

The Duron range of processors will keep running on a 100MHz FSB with a 200MHz processor-to-RAM bus speed.

Just remember that you need to buy a motherboard with a chipset that supports PC 2100 DDR SDRAM if you want to run the Thunderbird Athlons that use it, or one of the new Athlon XP processors.

The VIA KT133A is such a chipset. It supports both B and C suffixed AMD Thunderbird processors.

As you will note in the information on Crucial's RAM pricing, provided further down this article, PC2700 and PC3200 DDR RAM (also known as DDR333 and DDR400 respectively) is now available. - See the table below for a list of DDR RAM.


 

 

Websites that sell DDR SDRAM Memory

Other Computer Memory Upgrades and Useful Links

What is Computer Memory? |How to buy right Computer Memory? |How to Install Computer Memory? | What are different kinds of Memory Upgrades? | How Laptop memory is different than desktop Memory? | How to install Notebook memory Upgrade? |What is DDR Memory? | What is difference between DDR SDRAM 184pin and Rdram 184 pin? | What is difference between pc2100,PC2700 and pc3200 memory? |How to find Difference between Printer Memory? |How to find and install HP Printer Memory upgrade? | What is Rdram Rambus with different speeds? | What is Cisco Memory? | How to Find Cisco Memory upgrade? | Dell Memory Upgrade |


WebSite Design by 2edge.com